Source code for sfs.util

"""Various utility functions."""

import numpy as np
from . import defs

[docs]def rotation_matrix(n1, n2): """Compute rotation matrix for rotation from `n1` to `n2`.""" n1 = asarray_1d(n1) n2 = asarray_1d(n2) # no rotation required if all(n1 == n2): return np.eye(3) v = np.cross(n1, n2) s = np.linalg.norm(v) # check for rotation of 180deg around one axis if s == 0: rot = np.identity(3) for i in np.arange(3): if np.abs(n1[i]) > 0 and np.abs(n1[i]) > 0 and n1[i] == -n2[i]: rot[i, i] = -1 return rot c = np.inner(n1, n2) vx = [[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]] return np.identity(3) + vx +, vx) * (1 - c) / s ** 2
[docs]def wavenumber(omega, c=None): """Compute the wavenumber for a given radial frequency.""" if c is None: c = defs.c return omega / c
[docs]def direction_vector(alpha, beta=np.pi/2): """Compute normal vector from azimuth, colatitude.""" return sph2cart(alpha, beta, 1)
[docs]def sph2cart(alpha, beta, r): """Spherical to cartesian coordinates.""" x = r * np.cos(alpha) * np.sin(beta) y = r * np.sin(alpha) * np.sin(beta) z = r * np.cos(beta) return x, y, z
[docs]def cart2sph(x, y, z): """Cartesian to spherical coordinates.""" alpha = np.arctan2(y, x) beta = np.arccos(z / np.sqrt(x**2 + y**2)) r = np.sqrt(x**2 + y**2 + z**2) return alpha, beta, r
[docs]def asarray_1d(a, **kwargs): """Squeeze the input and check if the result is one-dimensional. Returns `a` converted to a :class:`numpy.ndarray` and stripped of all singleton dimensions. Scalars are "upgraded" to 1D arrays. The result must have exactly one dimension. If not, an error is raised. """ result = np.squeeze(np.asarray(a, **kwargs)) if result.ndim == 0: result = result.reshape((1,)) elif result.ndim > 1: raise ValueError("array must be one-dimensional") return result
[docs]def asarray_of_rows(a, **kwargs): """Convert to 2D array, turn column vector into row vector. Returns `a` converted to a :class:`numpy.ndarray` and stripped of all singleton dimensions. If the result has exactly one dimension, it is re-shaped into a 2D row vector. """ result = np.squeeze(np.asarray(a, **kwargs)) if result.ndim == 1: result = result.reshape(1, -1) return result
[docs]def asarray_of_arrays(a, **kwargs): """Convert the input to an array consisting of arrays. A one-dimensional :class:`numpy.ndarray` with `dtype=object` is returned, containing the elements of `a` as :class:`numpy.ndarray` (whose `dtype` and other options can be specified with `**kwargs`). """ result = np.empty(len(a), dtype=object) for i, element in enumerate(a): result[i] = np.asarray(element, **kwargs) return result
[docs]def strict_arange(start, stop, step=1, endpoint=False, dtype=None, **kwargs): """Like :func:`numpy.arange`, but compensating numeric errors. Unlike :func:`numpy.arange`, but similar to :func:`numpy.linspace`, providing `endpoint=True` includes both endpoints. Parameters ---------- start, stop, step, dtype See :func:`numpy.arange`. endpoint See :func:`numpy.linspace`. .. note:: With `endpoint=True`, the difference between `start` and `end` value must be an integer multiple of the corresponding `spacing` value! **kwargs All further arguments are forwarded to :func:`numpy.isclose`. Returns ------- numpy.ndarray Array of evenly spaced values. See :func:`numpy.arange`. """ remainder = (stop - start) % step if np.any(np.isclose(remainder, (0.0, step), **kwargs)): if endpoint: stop += step * 0.5 else: stop -= step * 0.5 elif endpoint: raise ValueError("Invalid stop value for endpoint=True") return np.arange(start, stop, step, dtype)
[docs]def xyz_grid(x, y, z, spacing, endpoint=True, **kwargs): """Create a grid with given range and spacing. Parameters ---------- x, y, z : float or pair of float Inclusive range of the respective coordinate or a single value if only a slice along this dimension is needed. spacing : float or triple of float Grid spacing. If a single value is specified, it is used for all dimensions, if multiple values are given, one value is used per dimension. If a dimension (`x`, `y` or `z`) has only a single value, the corresponding spacing is ignored. endpoint : bool, optional If ``True`` (the default), the endpoint of each range is included in the grid. Use ``False`` to get a result similar to :func:`numpy.arange`. See :func:`strict_arange`. **kwargs All further arguments are forwarded to :func:`strict_arange`. Returns ------- list of numpy.ndarrays A grid that can be used for sound field calculations. See Also -------- strict_arange, numpy.meshgrid """ if np.isscalar(spacing): spacing = [spacing] * 3 args = [] for i, coord in enumerate([x, y, z]): if np.isscalar(coord): args.append(coord) else: start, stop = coord args.append(strict_arange(start, stop, spacing[i], endpoint=endpoint, **kwargs)) return np.meshgrid(*args, sparse=True, copy=False)
[docs]def normalize(p, grid, xnorm): """Normalize sound field wrt position `xnorm`.""" return p / level(p, grid, xnorm)
[docs]def level(p, grid, x): """Determine level at position `x` in the sound field `p`.""" x = asarray_1d(x) r = np.linalg.norm(grid - x) idx = np.unravel_index(r.argmin(), r.shape) # p is normally squeezed, therefore we need only 2 dimensions: idx = idx[:p.ndim] return abs(p[idx])
[docs]def broadcast_zip(*args): """Broadcast arguments to the same shape and then use :func:`zip`.""" return zip(*np.broadcast_arrays(*args))